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Abstract
Correlation functions in the restricted primitive model are calculated within a
field-theoretic approach in the one-loop self-consistent Hartree approximation.
The correlation functions exhibit damped oscillatory behaviour as found before
in the Gaussian approximation (Ciach et al 2003 J. Chem. Phys. 118 3702).
The fluctuation contribution leads to a renormalization of both the amplitude
and the decay length of the correlation functions. The renormalized quantities
show qualitatively different behaviour than their mean-field (MF) counterparts.
While the amplitude and the decay length both diverge in the MF when the
λ-line is approached, the renormalized quantities remain of order of unity in the
same dimensionless units down to the coexistence with the ionic crystal. Along
the line of the phase transition the decay length and the period of oscillations
are independent of density, and their values in units of the diameter of the ions
are α−1

0 ≈ 1 and 2π/α1 ≈ 2.8 respectively.

Dedicated to Professor R Evans on the occasion of his 60th birthday.

1. Introduction

The distribution of charges in ionic systems has been a subject of considerable interest for
many years. In theoretical studies of systems such as molten salts, electrolytes or ionic liquids
the interaction potential is often approximated by the restricted primitive model (RPM), where
identical hard spheres carry positive or negative charges with equal magnitude. Earlier studies
concentrated on correlation functions for charges in ion-dilute systems [1–3], and later the
ion-dense systems were also investigated [2–9]. However, the question of the form of the
correlation functions in a liquid (fused salt) at coexistence with an ionic crystal remains open.
The correlation functions in a liquid phase can be quite accurately described within liquid
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Figure 1. A portion of the density–temperature phase diagram for the RPM as obtained in MF,
shown schematically. Solid lines separate the uniform fluid from the two-phase regions. Dashed
lines denoted by K and λ represent the Kirkwood line and the λ-line respectively. T and ρ are in
arbitrary units.

theories such as the mean-spherical approximation (MSA) [3, 5]. However, the transition to
a crystalline phase is not predicted by the liquid theories. The liquid–solid transition in the
RPM was determined within the density functional theory of freezing in [10], but the charge–
charge correlation function was not discussed in this work. Both the phase transition and the
correlation functions can be found on the same level of approximation within the framework
of the field theory introduced for the RPM in [11]. Phase coexistence with an ionic crystal
was recently found within the field-theoretic framework in [12] by applying the Brazovskii-
type approximation. The correlation functions are calculated in the same approximation in this
work. We pay particular attention to the decay length, the period of damped oscillations and
the amplitude along the phase coexistence with an ionic crystal.

Let us summarize the results of earlier theories. The behaviour of the charge–charge
correlation function hD(x) depends on thermodynamic conditions. In figure 1 a portion
of the density–temperature phase diagram, as obtained in different theoretical [2, 3] and
simulation [13] studies, is shown schematically. Usually the density and temperature are given
in the standard reduced units, ρ∗ = ρσ 3 and T ∗ = kBT Dσ

e2 respectively, where σ , e, D, kB and
T are the diameter and the charge of the ion, the dielectric constant, the Boltzmann constant
and temperature respectively. It is convenient to introduce the parameter

S ≡ T ∗

ρ∗ = 4π

x2
D

, (1)

where

xD = κDσ = √
4πβ∗ρ∗ (2)

is the dimensionless inverse Debye length, and β∗ = 1/T ∗. The solid lines in figure 1
represent boundaries of stability of the uniform fluid phase, and regions corresponding to
different qualitative properties of hD(x) are separated by the dashed lines. The Kirkwood line
(K) S = SK separates the high-temperature/low-density region S > SK, corresponding to an
asymptotic monotonic decay of correlations,

xhD(x)ρ∗2 = A(1)e−a1 x + A(2)e−a2 x, (3)
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from the low-temperature/high-density region S < SK, corresponding to exponentially damped
oscillatory behaviour of hD(x),

xhD(x)ρ∗2 = −Aφφ sin(α1x + θ)e−α0 x . (4)

In MF theories [5, 14, 15] the Kirkwood line is a straight line, and its slope was found to be
SK ≈ 8.33 in the GMSA [5], with similar results in other liquid theories, and SK ≈ 11.8 [15]
on the MF level of the field theory [11].

For S → S+
K the two dominant imaginary poles of h̃D(k), ia1 and ia2, merge together, and

for S < SK a pair of conjugate complex poles, iα0 ± α1, appears. The remaining poles modify
the short-distance behaviour (up to ∼3σ [5]). There is no controversy concerning this line, but
there are no general reasons for this line to be straight beyond MF [3].

When the λ-line S = Sλ is approached from the high-temperature side, the conjugate
complex poles of h̃D(k) reach the real axis. Both the decay length α−1

0 and the amplitude
Aφφ of the correlation function diverge as (S − Sλ)

−1/2, [11, 14–16]. The low-temperature
side of this line corresponds to a charge-ordered structure, where the nearest neighbours (nns)
are oppositely charged. The λ-line represents a continuous transition between the uniform
and the charge-ordered phases at temperatures higher than the tricritical-point temperature. At
temperatures lower than the tricritical-point temperature the λ-line represents a spinodal. The
slope of this line, Sλ, shows a strong dependence on approximations and assumptions made in
different theories [14]. In particular, in the MF approximation for the field theory Sλ ≈ 1.6
was obtained [11], whereas the MSA yields Sλ = 0 [5]. The charge-ordered liquid phase has
not been observed either experimentally or in simulations. A natural conclusion would be to
question the validity of theories that predict the existence of the λ-line. However, the λ-line of
continuous transitions to the charge-ordered phase was observed in simulations [17–19] in the
lattice version of the RPM (LRPM), in agreement with predictions of the lattice version of the
field theory [20]. Some other theories [21–23] yield similar results for the LRPM. The MSA,
however, predicts an absence of such a transition in the LRPM. One might argue that the MSA
theories are correct only in the continuum space, and the field theory yields correct results only
on the lattice. This is indeed the case for the field theory in the MF approximation. However,
fluctuations play a very important role in the RPM. Beyond MF, with the charge fluctuations
accounted for in a Brazovskii-type approximation [12, 24, 25], the decay length of the charge–
charge correlation function does not diverge in the continuum-space RPM [12], but its value
has not been found yet. At the same time a first-order transition to an ionic crystal is found [12]
for the range of densities and temperatures that agrees with simulations [13].

The field-theory results [12, 24, 25] shed light on the nature of the λ-line in continuum
space; it separates the stability region of the disordered phase on the phase diagram (ρ∗, T ∗)
into two regions that correspond to different forms of the most probable instantaneous
distributions of ions. At the high-temperature side of the line S = Sλ the distribution of ions
is most probably random. For S < Sλ, however, the most probable instantaneous distributions
of the ions correspond to charge-density waves with the wavelength ∼2.5σ . According to
the above prediction, in real-space representation charge-ordered clusters with an nn distance
∼1.27σ should dominate over randomly distributed ions in microscopic states of the disordered
phase. Such structures were indeed seen in simulation snapshots [26–28]. Our purpose is to
verify if the instantaneous order has some effect on the correlation functions beyond the MF
approximation.

In [15] the correlation functions were calculated in the MF (Gaussian) approximation
within the framework of the field-theoretic description developed in [11]. In this work we
consider a simple criterion of validity of the MF (Gaussian) approximation for a system
where the dominant fluctuations of the order parameter are periodic in space. The criterion
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is formulated in terms of the MF correlation functions. An important feature is a strong
dependence of the validity of the MF approximation for h̃D(k) on k. We present a derivation
of the criterion, which is next used for a verification of the validity of the MF in the RPM. The
results of [15] are extended beyond the Gaussian approximation, and the correlation functions
are calculated to a one-loop order. In the phase-space region where the MF is qualitatively
wrong, the self-consistent one-loop approximation is used, as in the Brazovskii theory [29].
We verify that the Brazovskii theory is valid, at least semiquantitatively, near the coexistence
with the ionic crystal. Liquid–crystal coexistence was obtained earlier in [12]. We find that
the amplitude and the decay length are quite small at the coexistence. This result shows that
the pair-correlation functions cannot give any information on the process of clustering of ions
observed in individual microstates.

In the next section we briefly present the field-theoretic description of the RPM. Definitions
of the quantities relevant for the present work are given, and notation is fixed in section 2.1.
Section 2.2 is devoted to a short summary of earlier results obtained in the MF approximation.
In section 2.3 we briefly describe the weighted-field approximation [11, 30] that is used in our
calculations. Sections 3 and 4 contain results obtained in the present work. A criterion of the
validity of the MF approximation for the structure factor is derived and applied to the RPM in
section 3. In section 4 the correlation functions are calculated in the Brazovskii theory [29].

2. Background

2.1. Field-theoretic description of the RPM

In the field theory derived for the RPM in [11, 25, 30] the fluctuating order-parameter (OP)
fields are the local deviations from the most probable number and charge densities, η(x) =
ρ∗(x) − ρ∗

0 (x) and �φ(x) = φ(x) − φ0(x) respectively, where ρ(x) = ρ∗+(x) + ρ∗−(x) and
φ(x) = ρ∗+(x) − ρ∗−(x), with analogous definitions for the most probable quantities for which
the subscript 0 is used. The subscripts + and − refer to cations and anions, respectively.
Asterisks indicate that all densities are dimensionless (the unit volume is σ 3). eφ is the charge
density in e/σ 3 units. We focus on systems that are globally charge-neutral,

∫

x
φ(x) = 0, (5)

where in this paper we use the notation
∫

x ≡ ∫
dx. The fields η(x) and �φ(x) are thermally

excited with the probability density [11, 25, 31]

p[φ, η] = −1 exp(−β��MF[φ, η]), (6)

where β is the reciprocal temperature (β = 1/kBT ),

 =
∫

DφDη exp(−β��MF[φ, η]) (7)

is the normalization constant, and

��MF[φ, η] = �MF[φ(x), ρ∗(x)] − �MF[φ0(x), ρ∗
0 (x)], (8)

where for φ(x) = φ0(x) and ρ∗(x) = ρ∗
0 (x) the �MF[φ, ρ∗] assumes a minimum. �MF[φ, ρ∗]

is the grand-thermodynamic potential in a system where the OP fields are constrained to have
the given forms φ(x) and ρ∗(x).

In the theory studied in [11, 15, 25] the explicit expression for �MF[φ, ρ∗] is given by

�MF[φ, ρ∗] = Fh[φ, ρ∗] + U [φ] − μ

∫

x
ρ(x). (9)

4
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In the above, μ is the chemical potential of the ions (for the RPM, μ+ = μ− = μ),
Fh[φ, ρ∗] = ∫

x fh(φ(x), ρ∗(x)) is the hard-core reference-system Helmholtz free energy of the
mixture in which the core-diameter σ of both components is the same. We use the Carnahan–
Starling (CS) form of fh(φ, ρ∗) in the local-density approximation, as in [12]. Finally, the
energy in the RPM is given by

βU [φ] = β∗

2

∫

x

∫

x′

θ(|x′ − x| − 1)

|x − x′| φ(x)φ(x′) = β∗

2

∫

k
φ̃(k)Ṽ (k)φ̃(−k), (10)

where
∫

k ≡ ∫
dk/(2π)3, and f̃ (k) denotes a Fourier transform of f (x). Contributions to the

electrostatic energy coming from overlapping cores are not included in (10). Here and below
the distance is measured in σ units. The Fourier transform of the dimensionless Coulomb
potential V (x) = θ(x − 1)/x , where x = |x|, is

Ṽ (k) = 4π cos k/k2, (11)

where k is in σ−1 units.
In the system with no constraint on the form of the OP fields, which can fluctuate about

the most probable values with the probability (6), the grand-thermodynamic potential is given
by the standard statistical–mechanical relation

� = �MF[φ0(x), ρ∗
0 (x)] − kBT log , (12)

where the second term is the contribution to � associated with fluctuations about the most
probable fields φ0(x), ρ∗

0 (x). In this work we limit ourselves to the disordered phase, where
φ0(x) = 0, and hence �φ = φ, and ρ∗

0 (x) = ρ∗
0 = constant. The correlation function for the

fields f = φ, η, and g = φ, η is defined by

G f g(�x) = 〈 f (x1)g(x2)〉con (13)

where �x = |x1 − x2|, and

〈 f (x1)g(x2)〉con ≡ 〈 f (x1)g(x2)〉 − 〈 f (x1)〉〈g(x2)〉, (14)

and 〈A[φ, η]〉 denotes the average value of the quantity A[φ, η], with the probability given by
the Boltzmann factor (6). The charge-density correlation function Gφφ is related to the analogue
of the total charge–charge correlation function hD(x) [3, 5], and in Fourier representation this
relation is given by

G̃φφ(k)

〈ρ∗〉 = h̃D(k)〈ρ∗〉 + 1. (15)

2.2. Mean-field approximation

In the mean-field (MF) approximation, equivalent to the random phase approximation (RPA),
� (equation (12)) in the fluid phase is just approximated by �MF[0, ρ∗

0 ]. In the ordered phase �

is approximated by another minimum of �MF[φ, ρ∗], corresponding to φ0(x) and ρ0(x) that are
periodic in space. Here we limit ourselves to the disordered phase. The functional ��MF[φ, η]
(equations (8) and (9)) can be separated into two parts,

��MF[φ, η] = �2[φ, η] + �int[φ, η], (16)

where the Gaussian part is

β�2[φ, η] = 1
2

∫

k
φ̃(k)C̃0

φφ(k)φ̃(−k) + 1
2

∫

k
η̃(k)C̃0

ηη(k)η̃(−k), (17)

5
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with

C̃0
f f (k) = δβ��MF

δ f̃ (k)δ f̃ (−k)

∣∣∣∣
f =0

. (18)

The MF approximation for G f f is denoted by G0
f f , and is identified with the Gaussian

approximation. In the Gaussian approximation the correlation functions are given in
equation (14), with the approximation ��MF = �2 used in the Boltzmann factor (6) (�int[φ, η]
is neglected in equation (16)). Since the two OP fields are decoupled in �2, in Fourier
representation

G̃0
f f (k) = 1/C̃0

f f (k),

as can be verified easily.
The charge-density correlation function in the MF approximation was studied in [15]. In

Fourier representation G̃0
φφ(k) is given by

G̃0
φφ(k) = C̃0−1

φφ (k) = T ∗
(
S + Ṽ (k))

= T ∗

(S − Sλ + �Ṽ (k))
, (19)

where S is defined in equation (1),

Sλ ≡ −Ṽ (kb) ≈ 1.61, (20)

�Ṽ (k) = Ṽ (k) − Ṽ (kb) 
k→kb v2(k − kb)
2 + O((k − kb)

3), (21)

v2 ≈ 1.07, and kb ≈ 2.46 corresponds to the minimum, Ṽ (kb) ≈ −1.61, of Ṽ (k) given in
equation (11).

Let us first focus on the behaviour of G̃0
φφ(k) for k → 0. From (19) and (11) we obtain

G̃0
φφ(k)

ρ∗
0


k→0
Sk2

(S − 2π)k2 + 4π

k→0

S

4π
k2. (22)

For S → ∞ the first relation in (22) reduces to the form

G̃0
φφ(k)

ρ∗
0


k→0
k2

k2 + x2
D

, (23)

where the dimensionless inverse Debye length xD is given in (2). Note that equation (23)
(with equation (15)) is consistent with the exact second-moment condition of Stillinger and
Lovett [3, 4] as well as with the Debye–Hückel result.

For k �= 0 the properties of G̃0
φφ(k) agree with the results of other theories [14] only

qualitatively [15]. The qualitative agreement with the GMSA results for h̃D(k) [5] is found
only in the phase-space region given by S  Sλ, where S and Sλ are defined in equations (1)
and (20). The λ-line, S = Sλ, represents the boundary of stability of the functional ��MF

in the (ρ∗
0 , T ∗) phase diagram [12, 25], because at this line the second functional-derivative

of ��MF vanishes for k = kb, where kb is the wavenumber of the most probable fluctuations
φ̃(kb) [25, 32] (see (19)). No such instability is found in the GMSA, as discussed already in
the introduction.

The charge-density correlation function in real-space representation is obtained in [15] by
a pole analysis of G̃0

φφ(k) (equation (19)). The behaviour described in the introduction was
obtained with S = SK ≈ 11.8. The explicit expressions for the amplitude Aφφ , the phase θ and
the inverse lengths α0 and α1 are given in [15]. When the λ-line is approached, both α−1

0 and
Aφφ diverge as ∝ (S − Sλ)

−1/2, whereas θ ∝ (S − Sλ)
1/2 and α1 → kb.

6



J. Phys.: Condens. Matter 19 (2007) 236203 O Patsahan and A Ciach

The number-density correlation function in the above MF theory for the RPM has the
trivial form

G0
ηη(x − x′) = G0

ηηδ(x − x′), where G0
ηη =

[
∂2 fh

∂ρ∗2

]−1

, (24)

because the microscopic structure associated with hard spheres is suppressed in the coarse-
grained description.

Beyond MF the second term in equation (12) is included. This term represents the
fluctuation contribution to the grand potential. In [12] the Brazovskii theory [29] is chosen
to find the approximate form of this term in the disordered and the ordered phases. In this work
the same approximation is chosen for a determination of the correlation functions.

2.3. Weighted-field approximation

The two OP fields are not equivalent, because in the RPM only charges interact. For this reason
it is possible to simplify the field theory [25, 33]. In this work we focus on the weighted-field
(WF) approximation introduced in [11], and described in more detail in [25, 30, 31]. In the
WF approximation the field η(x) is approximated by its most probable form for each given
field φ(x). For the given field φ(x) the most probable field η corresponds to the minimum of
β��MF[φ, η] and is determined by δ��MF/δη = 0. Thus, in the WF approximation the field
η(x) assumes the form

ηWF(φ(x)) =
∑

n

an

n! φ(x)2n, (25)

where an are functions of ρ∗
0 [12, 30]. The Boltzmann factor (6) and  in the WF reduce to the

forms

pWF[φ] = −1
WFe−βHWF[φ]. (26)

WF =
∫

Dφe−βHWF[φ], (27)

where HWF[φ] = ��MF[φ, ηWF[φ]].
We truncate the expansion in (25) at n = 2, and limit ourselves to the φ6 theory, with HWF

approximated by

βHWF[φ] = 1

2

∫

x

∫

x′
φ(x)C0

φφ(x − x′)φ(x′) + A4

4!
∫

x
φ4(x) + A6

6!
∫

x
φ6(x) + O(φ8), (28)

The explicit forms of A4(ρ
∗
0 ) and A6(ρ

∗
0 ) were found in [12], and for the convenience of the

reader are given in appendix A. In this work we consider only ρ∗
0 > 0.1541; for this range of

densities A6(ρ
∗
0 ) > 0. For A6(ρ

∗
0 ) < 0 the term O(φ8) must be included for stability reasons.

One should remember that the accuracy of the results obtained with the above functional
depends on how large the neglected contributions to βHWF[φ] are.

In the above φ6 theory the charge-density correlation function is given in equation (13)
with the probability distribution approximated by equation (26). In the following 〈· · ·〉 denotes
the average in the WF approximation. The average density in the disordered phase and the
number-density correlation function for x �= x′ are approximated by [12, 15]

〈ρ∗(x)〉 = ρ∗
0 + a1〈φ(x)2〉 + a2

2! 〈φ(x)4〉, (29)

and

Gηη(x, x′) ≡ G0
ηηδ(x, x′) + 〈ηWF(x)ηWF(x′)〉con = G0

ηηδ(x, x′)

+ a2
1〈φ2(x)φ2(x′)〉con + a1a2

2
(〈φ4(x)φ2(x′)〉con + (x ↔ x′))

+ a2
2

4
〈φ4(x)φ4(x′)〉con, (30)

7
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where the explicit forms of a1(ρ
∗
0 ) and a2(ρ

∗
0 ), obtained in [12], are given in appendix A. We

should stress that beyond the local-density approximation for Fh in equation (9), the first term
in (30) should be replaced by the non-local hard-sphere contribution.

3. Verification of validity of the MF approximation

We first present main steps of a derivation of the criterion of validity of the MF approximation
for the correlation function. Let us rewrite (28) in the form

HWF[φ] = H0[φ] + Hint[φ], (31)

where

H0[φ] = 1
2

∫

x

∫

x′
φ(x)C0

φφ(x − x′)φ(x′). (32)

In order to verify the validity of the MF approximation for the charge-density correlation
function, Gφφ , we calculate the lowest-order correction and compare it with G0

φφ . The MF
is valid when the correction term is negligible compared to G0

φφ . The correction term is present
when Hint is included in equation (31). Let us assume that Hint � H0, and exp(−βHWF) can
be expanded about exp(−βH0) in (27). We truncate the expansion at the first-order term, and
in this approximation we obtain

WF = 0

[
1 − A4

4!
∫

x
〈φ4(x)〉0 + O(A2

4,A6)

]
, (33)

where

0 =
∫

Dφe−βH0 (34)

and 〈· · ·〉0 denotes averaging with the Gaussian probability p = −1
0 exp(−βH0). At the same

order of approximation (with terms O(A2
4,A6) neglected) we have

〈φ(x1)φ(x2)〉WF =
∫

Dφe−βH0 φ(x1)φ(x2) − A4

4!
∫

Dφe−βH0 φ(x1)φ(x2)

∫

x
φ4(x). (35)

From (33) and (35) we obtain

〈φ(x1)φ(x2)〉 = 〈φ(x1)φ(x2)〉0 + A4

4!
∫

x
〈φ(x1)φ(x2)〉0〈φ4(x)〉0

− A4

4!
∫

x
〈φ(x1)φ(x2)φ

4(x)〉0 + O(A2
4,A6). (36)

In Fourier representation the above takes the form

G̃φφ(k) = G̃0
φφ(k)

(
1 − A4

2
G0G̃0

φφ(k) + O(A2
4,A6)

)
, (37)

where

G0 =
∫

k
G̃0

φφ(k). (38)

Terms O(A2
4,A6) in equation (37) appear when the perturbation expansion of exp(−βHWF)

about exp(−βH0) is truncated at a higher-order term, and can be obtained in a similar way.
Each term in the perturbation expansion can be conveniently represented by a Feynman
diagram, where a line connecting points x and x′ represents G0

φφ(x − x′), and −A4 or
−A6 represent vertices from which 4 or 6 lines emanate. Finally, a space integration is
associated with each vertex, or in Fourier representation an integration is associated with each

8
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Figure 2. Feynman diagrams contributing to Gφφ to two-loop order. The shaded circle and the
bullet represent −A4 and −A6 respectively, and external points are represented by open circles.
Lines connecting points x1 and x2 represent G0

φφ(x1 − x2).

loop. Numerical factors in the perturbation expansion are associated with a symmetry of the
corresponding graph. In figure 2 the Feynman diagrams contributing to Gφφ are shown up to
two-loop order. The lowest-order correction to G0

φφ(x − x′) (see (37)) is represented by the
diagram shown in figure 2(a).

The MF approximation is correct when

b̃(k) = A4

2
G0G̃0

φφ(k) � 1. (39)

Note that the lowest-order correction to G̃φφ(k) depends strongly on k (through G̃0
φφ(k)), and

also on the whole spectrum of the wavelengths (through G0).
Let us first analyse the properties of G0, explicitly given by

G0 = T ∗

2π2

∫ ∞

0
dk f (k) (40)

where

f (k) = k2G̃0
φφ(k) = k4

Sk2 + 4π cos(k)
. (41)

The integral (40) diverges because for k → ∞ the integrand f (k) increases as k2/S. The
large-k (short-distance) behaviour is associated with hard-sphere ordering. This ordering is
not described correctly by the present field theory, because of the local-density approximation
for Fh in equation (9). The divergency of G0 is an artefact of this approximation. We can
regularize the integral in (40) by introducing a cutoff � ≈ π . In our theory the natural cutoff
corresponds to the shortest possible period of the oscillatory decay of charge correlations, 2σ ,
and we choose � = π in σ−1 units. Dependence on � in the field theory indicates dependence
on the form of the reference-system free energy. Note that G0 = G0

φφ(0). Alternatively, the
integral (40) can be regularized by assuming G0 = G0

φφ(σ ).
The properties of the cutoff-regularized integral depend crucially on S. For

S = S0 ≈ 2.58 (42)

the f (k) has an inflection point for k ≈ 3.32. For S > S0 the f (k) increases monotonically,
and for S < S0 a maximum and a minimum appear for kmax < π and for kmin > π , respectively
(see figure 3). For S → Sλ the maximum of f (k) moves to k = kb and increases to infinity,
and f (k) can be written in the form

f0(k) 
S→Sλ

k2

S − Sλ + v2(k − kb)2
. (43)

The integral

G0 = T ∗

2π2

∫ �

0
dk f0(k) (44)

9
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Figure 3. The integrand f (k) in equation (40) (solid line) and the approximate form (43) (dashed
line) for S = 1.712 (S − Sλ = 0.1).

can be evaluated analytically. The cutoff-regularized integral (40) is analysed in more detail in
appendix B, where we find the asymptotic results

G0(S) 


⎧
⎪⎪⎨

⎪⎪⎩

T ∗�3

6π2S
= ρ∗

0 �3

6π2
if S → ∞

T ∗k2
b

2π
√

v2(S − Sλ)
+ T ∗�

2π2v2
+ O(log �) if S − Sλ � v2k2

b .
(45)

Note that for S − Sλ � v2k2
b the first contribution to G0(S) is cutoff independent. For � ≈ π

the cutoff-dependent contribution is negligible when compared to the first term. Since the
main contribution to G0(S) is independent of �, the precise form of the hard-sphere reference-
system free energy is not important, and our approach can give quantitatively correct results
beyond MF. This is because for k ≈ kb the ordering of charges (nearest neighbours oppositely
charged) takes place as a result of the tendency for minimizing the electrostatic energy. For
S > S0 the wavenumbers k ≈ � yield the main contribution to G0(S). No other wavelength
is distinguished, since f (k) increases monotonically. Strong �-dependence of G0(S) indicates
that the reference system plays an important role and a better approximation for Fh is necessary
in order to obtain accurate results. In such a case microscopic theories are superior to our
approach. Our first conclusion is that quantitatively correct results in this field theory can in
principle be obtained for S − Sλ � v2k2

b , and cannot be obtained for S > S0. Recall that
in practice we consider the truncated expansion in equation (28). The accuracy of the results
depends on the truncation, but can be systematically improved by including higher-order terms
in equation (28).

Let us consider the criterion (39) in the cutoff-regularized theory. In order to evaluate b̃(k)

we assume � = π . For k → 0 we find from equations (45) and (22) the asymptotic behaviour

b̃(k) 
k→0 Bk2

with

B ≈

⎧
⎪⎪⎨

⎪⎪⎩

A4ρ
∗2
0 S

48
if S → ∞, � = π

A4ρ
∗2
0 S2k2

b

16π2
√

v2(S − Sλ)
if S − Sλ � v2k2

b ,

10
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Figure 4. Top: a few Feynman diagrams contributing to Gφφ in the one-loop approximation (46).
The symbols are the same as in figure 2. Bottom: the graphical representation of the self-consistent
equation for GH

φφ , represented by the thick line. The thin line represents G0
φφ .

where A4 is given in appendix A. The correction term is negligible for k � 1/
√

B. For
any given thermodynamic state G̃0

φφ(k) can be arbitrarily close to the exact result G̃φφ(k) for
sufficiently small k. For this reason for k → 0 our MF result is identical to the exact expression,
as observed in section 2.2.

For k �= 0 the MF result departs from the exact form of the correlation function. For a
given thermodynamic state the maximum of the correction term is assumed for k = kb, and the
corresponding form of b̃(kb) is

b̃(kb) 


⎧
⎪⎪⎨

⎪⎪⎩

π

12
A4ρ

∗2
0 if S → ∞, � = π

A4ρ
∗2
0 S2k2

b

4π
√

v2(S − Sλ)3
if S − Sλ � v2k2

b,

In the case of large S the correction term depends only on ρ∗
0 , and we find that b̃(kb) < 0.975.

The MF result is not quantitatively correct, but at least the correction term is not large. For
S → Sλ, however, the correction term diverges as (S − Sλ)

−3/2 with a prefactor that is larger
than unity. For S − Sλ � 1 the MF result is qualitatively wrong, and the terms beyond the first
one must be included in the perturbation expansion discussed at the beginning of this section.
This will be done within the Brazovskii theory in the next section.

The condition (39) is valid in other physical systems with the OP denoted by φ, the OP
correlation function denoted by Gφφ , and with A4 denoting the four-point vertex function
(inverse correlation function) δ4�MF/δφ(x)4, calculated at one point in the local-density
approximation. In systems where any kind of periodic ordering leading to some sort of
crystalline structures occurs, the MF approximation for the correlation function, G0

φφ(x), can
be valid sufficiently far from the MF line of instability (λ-line), provided that the four-point
vertex function (inverse correlation function) for nearest neighbours is sufficiently small, and
both G0

φφ(x) and G0
φφ(σ ) are small too.

4. Correlation functions in the one-loop approximation

4.1. Perturbation expansion

In this section the perturbation theory [34, 35] outlined in section 3 is considered to an infinite
order, and G̃φφ is calculated in the effectively one-loop approximation. In this approximation
the Feynman diagrams shown in figure 4 (top) are included, and G̃φφ has a form of the

11
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geometric series

G̃φφ ≈ G̃0
φφ

∑

n=0

(qG̃0
φφ(k))n, (46)

where in the φ6 theory

q = −
(A4G0

2
+ A6G2

0

8

)
. (47)

The inverse function in this approximation is given by

C̃φφ(k) ≈ C̃0
φφ(k) − q. (48)

The approximate expression (48) for the inverse charge-density correlation function can be
rewritten in the form

C̃φφ(k) =
(

SH + 4π cos k

k2

)
β∗, (49)

which is the same as the form of C̃0
φφ(k) (see equations (19) and (11)), except that S = T ∗/ρ∗

0
is replaced by the renormalized quantity

SH = S − qT ∗. (50)

According to the results of section 3, the form of q defined in equation (47) depends
qualitatively on S.

For S > S0 we have (see (45)) in the φ6 theory (28)

q = −
[A4ρ

∗
0

2

�3

6π2
+ A6ρ

∗2
0

8

(
�3

6π2

)2]
. (51)

From (49)–(51) and from the result of [15] we obtain the Kirkwood line, SH = 11.8, given by
the explicit expression

T ∗(ρ∗
0 ) = 11.8ρ∗

0

1 − qρ∗
0

. (52)

Because of the strong cutoff dependence, results of our theory are inaccurate for S > S0,
as discussed in section 3. Since the accuracy of the results is limited by the local-density
approximation for the reference system, we shall not try to improve the perturbation expansion
about the MF result for S > S0.

For S < S0 the results are independent of the precise form of the reference-system free
energy, and our theory is reliable in this part of the phase diagram. The accuracy of our result
is limited only by the truncation of the expansion in φ2 in equation (28), and by the accuracy
of the perturbation expansion. We can improve the accuracy of the one-loop approximation
by considering the self-consistent theory. In equation (48), q is the functional of G̃0

φφ(k) (see
equation (38) for G0). In the self-consistent, effectively one-loop Hartree approximation [29],
q is the functional of the same form, but of G̃H

φφ(k) = 1/C̃H
φφ(k), which is the result of the

whole resummation in equation (46). The inverse correlation function in the self-consistent
approximation assumes the form (see (49) (50) and (19)) [25, 29, 30]

C̃H
φφ(k) = r0 + v2(k − kb)

2β∗, (53)

where

r0 = β∗(S − Sλ) − q(r0), (54)

12
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Figure 5. The thin solid line represents T ∗ = v2k4
b/A2

4, and the dashed line is S = S0 ≈ 2.58. For
T ∗ � v2k4

b/A2
4 and S < S0 the results of the self-consistent one-loop approximation are correct.

In the rest of the phase diagram either the remaining Feynman diagrams (including the one shown
in figure 2(b)) have to be included, or the approximate form of G(r0), equation (55), is not valid.
The thick solid line represents the phase transition found in [12].

and where in the self-consistent approximation q(r0) is given in equation (47), but with G0

replaced by

G(r0) = T ∗

2π2

∫
dk k2G̃H

φφ(k) = k2
b

√
T

∗

2π
√

v2r0
. (55)

In the above the result of appendix B (with β∗(S − Sλ) replaced by r0) is used. The self-
consistent solution of equations (54) and (47) with G0 replaced by G(r0), equation (55), can be
found analytically. The explicit expression for r0 is given in appendix C.

For S < S0 our Brazovskii-type approximation relies on two important assumptions, and
therefore it is valid only in a limited region of the phase diagram. The first assumption,
discussed in section 3 and in appendix B in the context of validity of equation (55), is
r0 � β∗v2k2

b. The second assumption is that the contributions to G̃φφ(k) associated with
the two-loop diagrams (including the diagram shown in figure 2(b)) are negligible compared
to the one-loop diagrams. As shown by Brazovskii [29], the two-loop (figure 2(b)) and higher-
order diagrams can be neglected if A4

√
β∗v2 � r0. From the two above conditions we obtain

the region in the phase diagram,

T ∗ � v2k4
b

A2
4

and S < S0 ≈ 2.58, (56)

where equations (53) and (55) give accurate results in the field theory corresponding to the
Hamiltonian (28). The line T ∗ = v2k4

b/A2
4 is shown in figure 5 together with the coexistence

line obtained in [12]. Note that the assumptions of our theory are satisfied near the phase
coexistence for the high densities ρ∗

0 > 0.5.
The charge-density correlation function in real space can be obtained by following the pole

analysis of [15], just by substituting SH for S. For S  S0 the SH is given in equations (50)
and (51), and for S → Sλ the renormalized quantity (50) takes the form

SH = T ∗r0 + Sλ. (57)

13
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Figure 6. The inverse decay length α0 of the charge-density correlation function, as a function of
SH − Sλ. The line α0(SH − Sλ) splits into two branches representing a1 and a2 at the Kirkwood
line (52). The dashed line is the inverse decay length obtained from the approximate form of C̃φφ(k)

(equation (53)). For the relation of SH − Sλ to thermodynamic variables see the text.

Figure 7. α1 = 2π/λ, where λ is the period of damped oscillations of Gφφ(x), as a function of
SH − Sλ. For the relation of SH − Sλ to thermodynamic variables see the text.

In the former case the one-loop approximation is used, and in the latter case the self-consistent
one-loop approximation is used. The inverse lengths α0 and α1 are shown in figures 6 and 7
as functions of SH − Sλ, where the numerical results obtained in [15] are used. The relation
between SH−Sλ and thermodynamic quantities is not trivial, and in the one-loop approximation
is based on equation (50). Explicit expression for SH − Sλ, based on the above results, can be
given in the limiting cases, S  S0, or S − Sλ � k2

b . The condition equivalent to S  S0

has the form SH − Sλ  S0 − Sλ − qT ∗ = S0(1 − qρ∗
0 ) − Sλ > 5 (equations (50) and (51)

were used), and in this regime SH − Sλ ≈ S − Sλ − T ∗q , where q is given in equation (51).

14
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Figure 8. Feynman diagrams contributing to the approximate form of Gηη(x1, x2) given in
equation (58), for x1 �= x2. Open circles represent external points x1 and x2. Lines connecting
points x and x′ represent GH

φφ(x − x′). The black box represents G0
ηη = 1/γ0,2. The vertex

from which the box and the two thin lines emanate represents −γ2,1 and the circle with a cross
inside represents �0

4,1 (for the relation between the above coefficients and ai see appendix A,
equation (A.1)). Symmetry factors are calculated according to standard rules [34, 35]. Diagram (a)
represents the first, diagrams (b) represent the second, and diagrams (c) and (d) represent the third
and the fourth contributions to equation (58) respectively.

When S < S0 and SH − Sλ � k2
b, then SH − Sλ ≈ T ∗r0(ρ

∗
0 , T ∗), where r0(ρ

∗
0 , T ∗) is the

self-consistent solution of equations (48) and (55). For the explicit form of r0 see appendix C.
Note that the range of correlations diverges (α0 = 0) for T ∗r0 = 0 (see figure 6). From the
explicit result for r0 (appendix C) it follows that, when T ∗ > 0, then r0 > 0 as well. The
range of charge-density correlations is thus finite, in agreement with the results of the MSA
and related approximations [3, 5], as well as with simulations.

Let us focus on the number-density correlation function in the weighted-field
approximation. In equation (30) Gηη is given in terms of higher-order correlation functions
for the field φ. In the one-loop self-consistent approximation, equation (30) assumes the form

GH
ηη(x, x′) = G0

ηηδ(x, x′) + (2a2
1 + 12a1a2G(r0) + 18a2

2G(r0)
2)GH

φφ(x, x′)2

+ 3!a2
2GH

φφ(x, x′)4, (58)

and this is represented graphically in figure 8. The numerical factors in equation (58) are
obtained in a standard way [34, 35].

4.2. Correlation functions at the coexistence with the ionic crystal

The transition between the liquid and ionic crystal was found in [12] in an approach consistent
with the self-consistent one-loop approximation outlined in section 4.2. Note that in the one-
loop approximation T ∗C̃φφ(k) depends on the thermodynamic state through a single variable
SH. Since the phase coexistence takes place for r0 � β∗v2k2

b, β∗GH
φφ depends on the

thermodynamic state only through SH = T ∗r0 + Sλ (equation (50)). From the explicit result
for r0 (appendix C), and the result for the coexistence line T ∗(ρ∗

0 ) obtained in [12], we obtain
r0(ρ

∗
0 ) shown in figure 9, and in turn we find T ∗r0 ≈ 0.2 for 0.25 < ρ∗

0 < 0.8. Thus, along the
phase coexistence line the inverse lengths are nearly independent of density, and their numerical
values are found to be α0 ≈ 0.97 and α1 ≈ 2.26 (see figures 6 and 7). The approximate
results for the amplitude and the phase are [15] −Aφφ ≈ 0.23SH/

√
SH − Sλ ≈ 0.96

and θ ≈ 0.88
√

SH − Sλ ≈ 3.81, respectively. The correlation functions along the phase
coexistence are shown in figures 10 and 11.

The inverse lengths α0 and α1 depend on the thermodynamic state through a single variable
also in the MSA and related approximations [5], and xD = κDσ = √

4π/S is usually chosen.
Note that in our theory SH reduces to S in MF; thus, the parameter

√
4π/SH reduces to xD. At

the transition we find
√

4π/SH ≈ 2.25. The characteristic inverse lengths in the GMSA for
xD ≈ 2.25 can be read off from figure 4 of [5], and they are α0 ≈ 1.5 and α1 ≈ 2.1. More
precise values are given in [5] for xD = 4, where α0 = 1.32 and α1 = 2.89, and for xD = 1.5,
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Figure 9. r0(ρ
∗
0 ) along the coexistence line T ∗(ρ∗

0 ) between liquid and the charge-ordered phase in
the φ6-theory.

Figure 10. Charge-density correlation function β∗GH
φφ(x) in the liquid phase for SH ≈ 1.8

corresponding to the coexistence with the charge-ordered phase. β∗GH
φφ(x) is dimensionless and x

is in σ units.

where α0 = 2.15 and α1 = 1.22. Rather good agreement between the two theories is obtained,
although in our theory the decay length is larger than in the GMSA. Similar fair agreement is
obtained for the amplitude and the phase shift.

Note that the form of β∗GH
φφ(x) is the same along the phase coexistence, for a large range

of density. This result is consistent with the structure of the ionic crystal coexisting with the
liquid, where the nn distance is also independent of density on the same level of approximation.
This result reflects the fact that the tendency for ordering in periodic structure follows directly
from the form of the Coulomb potential, and not from the close packing of hard spheres.

The number-density correlation function is shown in figure 11. In our theory the
contribution to the correlation functions associated with hard-sphere ordering is neglected. The
number-density correlation function shown in figure 11 results from the coupling between the
number-density and the charge-density fluctuations, and is induced by the charge ordering,
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Figure 11. Charge-density fluctuation contribution to the number-density correlation function
β∗GH

ηη(x) (equation (58)) in the liquid phase at the coexistence with the charge-ordered phase for

ρ∗
0 = 0.7. In our theory the hard-sphere contribution has the form G0

ηηδ(x). In a more accurate

theory the hard-sphere contribution should be added to the above result. Note that β∗GH
ηη(x) is

three orders of magnitude smaller than the charge-density correlation function.

which in turn follows from the form of the interaction potential. The exact form of the number-
density correlation function should contain the entropic contribution due to the hard-sphere
ordering, in addition to the interaction-induced contribution shown in figure 11.

5. Summary

In this work the fluctuation contributions to the charge-density and the number-density
correlation functions in the RPM are calculated within the Brazovskii-type theory. In MF
the amplitude and the correlation length both diverge when the λ-line is approached. At
the low-temperature side of the λ-line an instantaneous order occurs in the majority of the
individual microscopic states, i.e. clusters with oppositely charged nns dominate over randomly
distributed ions. Averaging over microscopic states with somewhat different order leads to a
homogenization of the structure down to the fluctuation-induced first-order transition to the
ionic crystal. Our purpose here was a verification if the instantaneous order found on the
low-T side of the λ-line leaves some traces in the correlation functions. Our results show
that the correlation length and the amplitude of Gφφ(x), both divergent in MF at the λ-line,
show no indication of the MF singularity when the fluctuation contribution is included. Both
quantities are of order of unity in the whole stability region of the fluid phase. It is worth noting
that a similar breakdown of the MF approximation is expected in other systems exhibiting
fluctuation-induced first-order phase transitions. This breakdown is expected in this part of the
phase diagram, where the simple criterion (39) is not satisfied.

We should stress that the characteristic lengths in equation (4) are independent of density
along the phase coexistence, even though the crystallization occurs for a range of densities that
is much larger than in simple uncharged systems (see figure 1 and references [12, 13]). On
the other hand, the amplitude of the correlation function increases with density along the phase
coexistence. This observation indicates that when the density is decreased, vacancies appear in
the neighbourhood of each ion, whereas the most probable nn distance, π/α1, and the range of
order, α−1

0 , stay unchanged.
Finally let us summarize the approximations that we make and the accuracy of our results.

We start with the probability measure (6), where the local-density approximation is assumed
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for the hard-sphere reference system. Because of that approximation the effects associated with
hard-spheres ordering cannot be accurately described. As discussed in detail in section 3, the
dominant contribution to the charge-density correlation function is independent of the form of
the reference-system free energy in the relevant part of the phase diagram (figure 5). Thus, the
local-density approximation is justified when the charge-density correlation function near the
coexistence with the crystal is studied. However, this assumption influences our results for the
number-density correlation function (see figure 11). Next we assume the WF approximation
(section 2.3) and limit ourselves to the φ6 effective Hamiltonian (28) given in terms of the OP
describing fluctuations of the charge density φ. We limit ourselves to the φ6 theory, since the
phase coexistence was determined in this approximation. The accuracy of the theory can be
systematically improved by including subsequent terms ∝ φ2n in equation (28). This point
was already discussed in [12], where the phase transition was found in the φ4 and in the
φ6 theories. The results of the φ6 theory agree better with simulations [13]. The distance
between the crystallization lines obtained in the two approximations is much smaller than the
distance between either one of these lines and the λ-line. We expect that the results of the φ6

theory for the correlation functions are correct on the semiquantitative level as well. Based
on the Hamiltonian (28) the charge-density correlation function is calculated using the one-
loop self-consistent Hartree approximation. The contributions to the charge-density correlation
function beyond that approximation can be neglected in the region of the phase diagram where
conditions (56) are satisfied, as discussed in more detail in section 4.
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Appendix A. Coefficients A4, A6, a1 and a2 in the WF approximation

A4 = γ4,0 − 3
(−γ2,1)

2

γ0,2
,

A6 = γ6,0 − 15
(−γ2,1)(−γ4,1)

γ0,2
− 15

(−γ2,1)
3(−γ0,3)

γ 3
0,2

− 45
(−γ2,2)(−γ2,1)

2

γ 2
0,2

,

where

γ2m,n = ∂2m+n fh(φ, ρ)

∂φ2m∂ρn

∣∣∣∣
φ=0,ρ=ρ∗

0

.

In the CS approximation they assume the explicit forms

A4 = − 1 − 20s + 10s2 − 4s3 + s4

ρ∗
0

3(1 + 4s + 4s2 − 4s3 + s4)

and

A6 = 3W (s)

ρ∗
0

5(1 + 4s + 4s2 − 4s3 + s4)5
,

with s = πρ∗
0/6 and

W (s) = 3 − 84s + 360s2 + 2644s3 + 1701s4 − 8736s5

+ 11 240s6 − 8304s7 + 3861s8 − 1164s9 + 240s10 − 36s11 + 3s12.
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The coefficients a1 and a2 in equation (29) are

a1 = − γ2,1

2!γ0,2
,

a2

2
= − �0

4,1

4!γ0,2
, (A.1)

where

�0
4,1 = γ4,1 − 6(−γ2,2)(−γ2,1)

γ0,2
− 3(−γ3,0)(−γ2,1)

2

γ 2
0,2

. (A.2)

Appendix B. Analysis of G0 = T ∗g(S)

Let us first consider S  S0. Note that f (k) can be written in the form

f (k) = k2

S
− 4π

S2

cos k

1 + 4π cos k
Sk2

. (B.1)

For � ≈ π and for S  S0 the second term in (B.1) gives a negligible contribution to G0, and
we obtain

G0(S) = T ∗

2π2

∫ �

0
dk f (k) = T ∗�3

6π2S
+ O(S−2).

Let us focus on Sλ < S < S0, and write f (k) in the form

f (k) = f0(k) + � f (k),

where f0(k) is given in equation (43). When ( f (�)− f0(�))/ f0(kb) � 1, which is the case for
� ≈ π , because ( f (π) − f0(π))/ f0(kb) < 0.15, then � f (k) yields a negligible contribution
to G0. The explicit form of the integral (44) is

G0(S) = T ∗k2
b

2π2
√

v2(�S)

(
1 − �S

v2k2
b

)[
arctan

(√
v2

�S
(� − kb)

)

+ arctan

(
kb

√
v2

�S

)]
+ T ∗�

2π2v2
+ T ∗kb

2π2v2
log

[
�S + (� − kb)

2v2

�S + k2
bv2

]
,

where �S = S − Sλ. For �S � v2k2
b we obtain

G0(S) 
 T ∗k2
b

2π
√

v2(�S)
+ T ∗�

2π2v2
+ O(log �).

Appendix C. Explicit expression for r0

By solving equations (54) (taking into account (47), (48) and (55)) we obtain in the case of
τ0 = 1/(β∗ρ∗

0 ) + Ṽ (kb) < 0 the explicit expression for r0,

r0 = 1
2

[√
u + v − p/3 + √

2(h − (u + v)/2 − p/3) + τ0
]
,

where the following notations are introduced:

u =
(

−b2 +
√

b3
1 + b2

2

)1/3

, v =
(

−b2 −
√

b3
1 + b2

2

)1/3

,

b1 = −1

3

(
p2

12
+ 8a2T ∗A2

4τ0

)
, b2 =

(
− p

6

)3

+ 4

3
pa2T ∗A2

4τ0 − q∗

2

h = [((u + v)/2 + p/3)2 + 3(u − v)2/4]1/2

p = −(τ 2
0 + 2a2T ∗A6), q∗ = a4T ∗2A4

4

a = k2
b/(4π

√
v2).
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